Chromate Reductase Bacteria can rapidly evolve to tolerate extreme chemical environments. This has become important in bioremediation of polluted soil and water. The chromate reductase project is concerned with studying the mechanisms that some bacteria utilize to live in high chromium (VI) environments. I am particularly interested in bacteria that can reduce toxic chromium (VI) to the less toxic chromium(III) form. This reduction process can only occur through a catalyzed reaction pathway, utilizing a type of enzyme called chromate reductase. My research group at SSU has identified a new bacteria, Pseudomonas Veronii that is capable of reducing chromium (VI), indicating the presence of a chromate reductase. We have performed a partial purification of the enzyme from Pseudomonas Veronii and the initial studies on the enzyme kinetics. The current goal for this project is the complete purification and structural characterization of Pseudomonas Veronii. The long-term goal for this project is to understand the functional role of this enzyme.
Photochemistry of m-(1,3-propanedithiolato)-hexacarbonyldiiron The focus of this project is the photochemical reactivity of m-(1,3-propanedithiolato)-hexacarbonyldiiron. This compound is a structural and functional model for the active site of iron-only hydrogenase. Iron-only hydrogenase is an enzyme that catalyzes the reversible oxidation of molecular hydrogen and is responsible for most of the bio-processing of hydrogen. The photochemical experiments in this project could lend insight into how bacteria use hydrogen as a fuel.
My main area of research involves developing and utilizing ring contracting sulfur extrusion routes for the carbazole ring structure. An interesting use of these new desulfurization methods would be generating a general synthesis routes to natural products with the carbazole ring structure.
Another area of my research interests involves grafting polymer chains from the surface of organic crystals to form core/shell nanoparticles. These polymer encapsulated organic nanocrystals could provide new methods for drug delivery and film formation.
Research in the chemical biology of small molecule activation including HNO, NO, CO and H2S.
The Lares lab is working on identifying key interactions between the B-cell-activating factor receptor (BAFF-R) protein and a RNA aptamer that specifically binds BAFF-R. BAFF-R is expressed on B-cells and overexpressed in non-Hodgkin's lymphoma. When BAFF-R's ligand, B-cell-activating factor (BAFF), binds, proliferation and cell survival increase allowing the cancer to spread faster. Aptamers are capable of binding their targets with high specificity and affinity and have recently been investigated for their therapeutic advantages over antibody-based approaches. An RNA aptamer has been identified that efficiently binds BAFF-R, thus preventing binding of its ligand. The RNA aptamer has also been used to deliver therapeutic reagents that kill the cell. We are working on identifying the specific amino acids of BAFF-R that are responsible for the binding of the aptamer using site-directed mutagenesis. We also want to identify the nucleotides of the RNA aptamer that specifically bind BAFF-R using RNase protection assays. Understanding the specific interactions between BAFF-R and its aptamer would allow us to increase specificity, reducing off-target effects, and facilitate this therapeutic approach through clinical trials.
The re-emergence of bacterial pathogens as a significant threat to public health has lead to an increased awareness of food safety. One of the most common food-borne pathogens is Listeria monocytogenes, a bacteria found to contaminate a variety of raw and processed foods including vegetables, meats, and dairy products. Listeria infection can result in a variety of illnesses ranging in severity from fever and nausea to meningitis and fetal miscarriage. In the past decade it has been found that lactic acid bacteria, common food borne bacteria that are non-pathogenic, produce small peptides termed bacteriocins, that kill Listeria. Work in our lab focuses on understanding the key features of these molecules that allow them to target and kill competing bacteria such as Listeria. This work can in turn aid in the further development of these molecules as both potent and safe drugs and food preservatives in the endevor to find new means of fighting and preventing human disease.
My research group is focused on nanotechnology, Raman spectroscopies, and chemical education. We are dedicated to the development of new plasmonic substrates for surface-enhanced Raman scattering spectroscopies and the application of these substrates to the study of chemistry at the nanoscale. We also spend our time developing novel chemistry educational experiences for students of all ages.
Our group studies the impact of anthropogenic pollution on our local atmosphere. Our projects include measurements of: trace pollutants in our atmosphere by Gas Chromatography - Mass Spectrometery, aerosol optical thickness ("haze"), and ozone. These measurements are used along with computer modeling programs, to understand the types of processes that cause atmospheric pollution and to design control strategies for our unique local region.
Recently we have also been using ion chromatography to quantify pollutants in river water, in order to understand and limit our University's impact on our local watershed.